skip to main content

SciTech ConnectSciTech Connect

Title: Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys

Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in the alloys are unknown, and partly due to the complexity that the precipitation behaviors of the alloys may be closely related to the alloy's composition. In Part I of the present study, we have determined all the unknown precipitate structures in the alloys. Here in Part II, using atomic-resolution electron microscopy in association with the first principles energy calculations, we further studied and correlated the phase/structure transformation/evolution among these hardening precipitates in relation with the alloy's composition. It is shown that there are actually two coexisting classes of hardening precipitates in these alloys: the first class includes the η′-precipitates and their early-stage Guinier–Preston (GP-η′) zones; the second class includes the precursors of the equilibrium η-phase (referred to η{sub p}, or η-precursor) and their early-stage Guinier–Preston (GP-η{sub p}) zones. The two coexisting classes of precipitates correspond to two precipitation scenarios. - Highlights: • We determine and verify all themore » key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an alloy depends on the alloy's composition. • Very detailed phase/structure transformations among the precipitates are revealed.« less
Authors:
 [1] ;  [2] ;  [1] ;  [2] ; ;  [1]
  1. Center for High-Resolution Electron Microscopy, College of Materials Science & Engineering, Hunan University, Changsha, Hunan 410082 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22476013
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 99; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM COMPOUNDS; COPPER COMPOUNDS; EQUILIBRIUM; HARDENING; IMAGES; MAGNESIUM COMPOUNDS; PHASE TRANSFORMATIONS; PRECIPITATION; PRECURSOR; QUATERNARY ALLOY SYSTEMS; RESOLUTION; SIMULATION; TRANSFORMATIONS; TRANSMISSION ELECTRON MICROSCOPY; ZINC COMPOUNDS