skip to main content

Title: Synthesis, crystal structures, and physical properties of the new Zintl phases A{sub 21}Zn{sub 4}Pn{sub 18} (A=Ca, Eu; Pn=As, Sb)—Versatile arrangements of [ZnPn{sub 4}] tetrahedra

Four new Zintl phases, Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18} and Eu{sub 21}Zn{sub 4}Sb{sub 18} have been synthesized by metal flux reactions. Their structures have been established from single-crystal X-ray diffraction. Despite the similar chemical makeup and the identical formulae, the structures of the four compounds are not the same—Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18} and Eu{sub 21}Zn{sub 4}As{sub 18} crystallize in the monoclinic space group C2/m (No. 12, Z=4) with the β-Ca{sub 21}Mn{sub 4}Sb{sub 18} structure type, while Eu{sub 21}Zn{sub 4}Sb{sub 18} adopts the Ba{sub 21}Cd{sub 4}Sb{sub 18} structure type with the orthorhombic space group Cmce (No. 64, Z=8). Both structures are based on ZnAs{sub 4} or ZnSb{sub 4} tetrahedra, linked in slightly different ways, and Ca{sup 2+} and Eu{sup 2+} cations that fill the space between them. The structural relationships between the title compounds and other known ternary phases with intricate structures are discussed. Electrical resistivity measurement on single-crystalline Eu{sub 21}Zn{sub 4}Sb{sub 18} suggests an intrinsic semiconductor behavior with a band gap of ca. 0.2 eV. The temperature dependent DC magnetization measurement on the same material indicates Curie–Weiss paramagnetism in the high-temperature regime, and a spontaneous antiferromagnetic ordering below 8more » K. The calculated effective moments of Eu confirm the divalent Eu{sup 2+} ground state, as expected from the Zintl–Klemm concept. - Graphical abstract: The four new Zintl phases—Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18}, and Eu{sub 21}Zn{sub 4}Sb{sub 18}—crystallize in two structure types, showing the versatility in the arrangements of ZnAs{sub 4} and ZnSb{sub 4} tetrahedra. - Highlights: • Ca{sub 21}Zn{sub 4}As{sub 18}, Ca{sub 21}Zn{sub 4}Sb{sub 18}, Eu{sub 21}Zn{sub 4}As{sub 18}, and Eu{sub 21}Zn{sub 4}Sb{sub 18} are new compounds in the respective ternary phase diagrams. • They form with structure types, showing the versatility in the arrangements of ZnAs{sub 4} and ZnSb{sub 4} tetrahedra. • For both structures, the valence electron count follows the Zintl–Klemm rules.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
22475698
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 227; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; ANTIMONIDES; CALCIUM COMPOUNDS; ELECTRIC CONDUCTIVITY; ELECTRONIC STRUCTURE; EUROPIUM COMPOUNDS; GROUND STATES; MAGNETIZATION; MONOCLINIC LATTICES; MONOCRYSTALS; ORTHORHOMBIC LATTICES; PARAMAGNETISM; PHASE DIAGRAMS; SEMICONDUCTOR MATERIALS; SYNTHESIS; TEMPERATURE DEPENDENCE; VALENCE; X-RAY DIFFRACTION; ZINC ARSENIDES