skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Similarity and differences between the radion and Higgs boson production and decay processes involving off-shell fermions

Journal Article · · Physics of Atomic Nuclei

The radion is a scalar particle that occurs in brane world models and interacts with the trace of the energy–momentum tensor of the Standard Model (SM). The radion–SM fermion interaction Lagrangian differs from the Higgs boson–fermion interaction Lagrangian for off-shell fermions. It is shown that all additional, as compared to the Higgs boson, contributions to the amplitudes of radion production and decay processes involving off-shell fermions are canceled out for both massless and massive fermions. Thus, additional terms in the interaction Lagrangian do not change properties of these processes for the radion and the Higgs boson, except for the general normalization factors. This similarity is a consequence of gauge invariance for the processes with production of gauge bosons. When an additional scalar particle is produced, there are no apparent reasons for the above cancellation, as confirmed, for example, by the process with production of two scalar particles, which features an additional contribution of the radion in comparison with the Higgs boson.

OSTI ID:
22471859
Journal Information:
Physics of Atomic Nuclei, Vol. 78, Issue 13; Other Information: Copyright (c) 2015 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7788
Country of Publication:
United States
Language:
English