skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparative Assessment of Liver Tumor Motion Using Cine–Magnetic Resonance Imaging Versus 4-Dimensional Computed Tomography

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [1];  [3];  [4]; ; ;  [1];  [1]
  1. Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)
  2. Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)
  3. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States)
  4. Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

Purpose: To compare the extent of tumor motion between 4-dimensional CT (4DCT) and cine-MRI in patients with hepatic tumors treated with radiation therapy. Methods and Materials: Patients with liver tumors who underwent 4DCT and 2-dimensional biplanar cine-MRI scans during simulation were retrospectively reviewed to determine the extent of target motion in the superior–inferior, anterior–posterior, and lateral directions. Cine-MRI was performed over 5 minutes. Tumor motion from MRI was determined by tracking the centroid of the gross tumor volume using deformable image registration. Motion estimates from 4DCT were performed by evaluation of the fiducial, residual contrast (or liver contour) positions in each CT phase. Results: Sixteen patients with hepatocellular carcinoma (n=11), cholangiocarcinoma (n=3), and liver metastasis (n=2) were reviewed. Cine-MRI motion was larger than 4DCT for the superior–inferior direction in 50% of patients by a median of 3.0 mm (range, 1.5-7 mm), the anterior–posterior direction in 44% of patients by a median of 2.5 mm (range, 1-5.5 mm), and laterally in 63% of patients by a median of 1.1 mm (range, 0.2-4.5 mm). Conclusions: Cine-MRI frequently detects larger differences in hepatic intrafraction tumor motion when compared with 4DCT most notably in the superior–inferior direction, and may be useful when assessing the need for or treating without respiratory management, particularly in patients with unreliable 4DCT imaging. Margins wider than the internal target volume as defined by 4DCT were required to encompass nearly all the motion detected by cine-MRI for some of the patients in this study.

OSTI ID:
22458678
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 91, Issue 5; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English