skip to main content

SciTech ConnectSciTech Connect

Title: Alternative polymer separation technology by centrifugal force in a melted state

Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanningmore » calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.« less
Authors:
;
Publication Date:
OSTI Identifier:
22436816
Resource Type:
Journal Article
Resource Relation:
Journal Name: Waste Management; Journal Volume: 34; Journal Issue: 11; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CALORIMETRY; EFFICIENCY; MIXTURES; MUNICIPAL WASTES; OPTICAL MICROSCOPY; PLASTICS; POLYESTERS; POLYETHYLENES; RAMAN SPECTROSCOPY; RECYCLING; SEPARATION EQUIPMENT; SEPARATION PROCESSES; SOLID WASTES