skip to main content

SciTech ConnectSciTech Connect

Title: Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing amore » BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.« less
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund (Sweden)
  2. Bioprocess Control, Scheelevägen 22, 223 63 Lund (Sweden)
  3. (Sweden)
Publication Date:
OSTI Identifier:
22436810
Resource Type:
Journal Article
Resource Relation:
Journal Name: Waste Management; Journal Volume: 34; Journal Issue: 11; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; AMBIENT TEMPERATURE; ANAEROBIC DIGESTION; BIODEGRADATION; BIOMASS; GAS ANALYSIS; METHANE; REACTION KINETICS; WATER VAPOR