skip to main content

SciTech ConnectSciTech Connect

Title: Modelling non-adiabatic effects in H{sub 3}{sup +}: Solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces

Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reducesmore » the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.« less
Authors:
 [1] ;  [2] ;  [3]
  1. Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary)
  2. MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary)
  3. Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary and MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary)
Publication Date:
OSTI Identifier:
22436599
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 15; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACCURACY; ELECTRONS; ENERGY LEVELS; HAMILTONIANS; HYDROGEN IONS 3 PLUS; MASS; MOLECULES; POTENTIAL ENERGY; PROTONS; SCHROEDINGER EQUATION; SIMULATION