skip to main content

Title: Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.
Authors:
; ;  [1]
  1. Department of Physics, Cornell University, Ithaca, New York 14853 (United States)
Publication Date:
OSTI Identifier:
22436535
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 141; Journal Issue: 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CARBON TETRACHLORIDE; CHEMICAL REACTIONS; CHLOROFORM; DENSITY; ELECTRON DENSITY; FREE ENERGY; MOLECULES; SOLUTES; SOLUTIONS; SOLVATION; SOLVENTS