skip to main content

Title: Copper dimer interactions on a thermomechanical superfluid {sup 4}He fountain

Laser induced fluorescence imaging and frequency domain excitation spectroscopy of the copper dimer (B{sup 1}Σ{sub g}{sup +}←X{sup 1}Σ{sub u}{sup +}) in thermomechanical helium fountain at 1.7 K are demonstrated. The dimers penetrate into the fountain provided that their average propagation velocity is ca. 15 m/s. This energy threshold is interpreted in terms of an imperfect fountain liquid-gas interface, which acts as a trap for low velocity dimers. Orsay-Trento density functional theory calculations for superfluid {sup 4}He are used to characterize the dynamics of the dimer solvation process into the fountain. The dimers first accelerate towards the fountain surface and once the surface layer is crossed, they penetrate into the liquid and further slow down to Landau critical velocity by creating a vortex ring. Theoretical lineshape calculations support the assignment of the experimentally observed bands to Cu{sub 2} solvated in the bulk liquid. The vibronic progressions are decomposed of a zero-phonon line and two types of phonon bands, which correlate with solvent cavity interface compression (t < 200 fs) and expansion (200 < t < 500 fs) driven by the electronic excitation. The presented experimental method allows to perform molecular spectroscopy in bulk superfluid helium where the temperature and pressure canmore » be varied.« less
Authors:
;  [1]
  1. Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)
Publication Date:
OSTI Identifier:
22415880
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 20; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMPRESSION; COPPER; CRITICAL VELOCITY; DENSITY FUNCTIONAL METHOD; DIMERS; EXCITATION; FLUORESCENCE SPECTROSCOPY; HELIUM; HELIUM 4; INTERFACES; LAYERS; LIQUIDS; PHONONS; SOLVATION; SOLVENTS; SUPERFLUIDITY; SURFACES; VORTICES