skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4904889· OSTI ID:22415817
 [1];  [2]
  1. Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States)
  2. Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1,  exp( − βΔE)], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.

OSTI ID:
22415817
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English