skip to main content

SciTech ConnectSciTech Connect

Title: O{sub 3}-sourced atomic layer deposition of high quality Al{sub 2}O{sub 3} gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors

High quality Al{sub 2}O{sub 3} film grown by atomic layer deposition (ALD), with ozone (O{sub 3}) as oxygen source, is demonstrated for fabrication of normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Significant suppression of Al–O–H and Al–Al bonds in ALD-Al{sub 2}O{sub 3} has been realized by substituting conventional H{sub 2}O source with O{sub 3}. A high dielectric breakdown E-field of 8.5 MV/cm and good TDDB behavior are achieved in a gate dielectric stack consisting of 13-nm O{sub 3}-Al{sub 2}O{sub 3} and 2-nm H{sub 2}O-Al{sub 2}O{sub 3} interfacial layer on recessed GaN. By using this 15-nm gate dielectric and a high-temperature gate-recess technique, the density of positive bulk/interface charges in normally-off AlGaN/GaN MIS-HEMTs is remarkably suppressed to as low as 0.9 × 10{sup 12 }cm{sup −2}, contributing to the realization of normally-off operation with a high threshold voltage of +1.6 V and a low specific ON-resistance R{sub ON,sp} of 0.49 mΩ cm{sup 2}.
Authors:
; ; ; ; ;  [1] ; ;  [2] ; ; ; ; ;  [3]
  1. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)
  2. School of Physics, Peking University, Beijing 100871 (China)
  3. Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
Publication Date:
OSTI Identifier:
22415159
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 3; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALUMINIUM; ALUMINIUM OXIDES; BREAKDOWN; DIELECTRIC MATERIALS; ELECTRON MOBILITY; GALLIUM NITRIDES; HYDROGEN; LAYERS; OXYGEN; OZONE; SEMICONDUCTOR MATERIALS; TRANSISTORS; WATER