skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-G-BRF-07: Non-Circular Scanning Trajectories with Varian Developer Mode

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4889500· OSTI ID:22409756
; ; ;  [1]
  1. University Chicago, Chicago, IL (United States)

Purpose: Cone-beam CT (CBCT) in image-guide radiation therapy (IGRT) typicallyacquires scan data via the circular trajectory of the linearaccelerator's (linac) gantry rotation. Though this lends itself toanalytic reconstruction algorithms like FDK, iterative reconstructionalgorithms allow for a broader range of scanning trajectories. Weimplemented a non-circular scanning trajectory with Varian's TrueBeamDeveloper Mode and performed some preliminary reconstructions toverify the geometry. Methods: We used TrueBeam Developer Mode to program a new scanning trajectorythat increases the field of view (FOV) along the gantry rotation axiswithout moving the patient. This trajectory consisted of moving thegantry in a circle, then translating the source and detector along theaxial direction before acquiring another circular scan 19 cm away fromthe first. The linear portion of the trajectory includes an additional4.5 cm above and below the axial planes of the source's circularrotation. We scanned a calibration phantom consisting of a lucite tubewith a spiral pattern of CT spots and used the maximum-likelihoodalgorithm to iteratively reconstruct the CBCT volume. Results: With the TrueBeam trajectory definition, we acquired projection dataof the calibration phantom using the previously described trajectory.We obtained a scan of the treatment couch for log normalization byscanning with the same trajectory but without the phantom present.Using the nominal geometric parameters reported in the projectionheaders with our iterative reconstruction algorithm, we obtained acorrect reconstruction of the calibration phantom. Conclusion: The ability to implement new scanning trajectories with the TrueBeamDeveloper Mode enables us access to a new parameter space for imagingwith CBCT for IGRT. Previous simulations and simple dual circle scanshave shown iterative reconstruction with non-circular trajectories canincrease the axial FOV with CBCT. Use of Developer Mode allowsexperimentally testing these and other new scanning trajectories. Support was provided in part by the University of Chicago Research Computing Center, Varian Medical Systems, and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P30 CA14599. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the supporting organizations.

OSTI ID:
22409756
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English