skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation on phonon scattering in a GaAs nanowire field effect transistor using the non-equilibrium Green's function formalism

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4918301· OSTI ID:22402941
 [1]
  1. College of Engineering, Swansea University, Swansea (United Kingdom)

Using quantum transport simulations, the impact of electron-phonon scattering on the transfer characteristic of a gate-all-around nanowire (GaAs) field effect transistor (NWFET) has been thoroughly investigated. The Non-Equilibrium Green's Function formalism in the effective mass approximation using a decoupled mode decomposition has been deployed. NWFETs of different dimensions have been considered, and scattering mechanisms including acoustic, optical and polar optical phonons have been included. The effective masses were extracted from tight binding simulations. High and low drain bias have been considered. We found substantial source to drain tunnelling current and significant impact of phonon scattering on the performance of the NWFET. At low drain bias, for a 2.2 × 2.2 nm{sup 2} cross-section transistor, scattering caused a 72%, 77%, and 81% decrease in the on-current for a 6 nm, 10 nm, and 20 nm channel length, respectively. This reduction in the current due to scattering is influenced by the increase in the tunnelling current. We include the percentage tunnelling for each valley at low and high drain bias. It was also found that the strong quantisation caused the relative position of the valleys to vary with the cross-section. This had a large effect on the overall tunnelling current. The phonon-limited mobility was also calculated, finding a mobility of 950 cm{sup 2}/V s at an inversion charge density of 10{sup 12 }cm{sup −2} for a 4.2 × 4.2 nm{sup 2} cross-section device.

OSTI ID:
22402941
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 16; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English