skip to main content

Title: A chimeric path to neuronal synchronization

Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)
Authors:
;  [1]
  1. School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)
Publication Date:
OSTI Identifier:
22402523
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 25; Journal Issue: 1; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHIMERAS; EPILEPSY; INTERMEDIATE STATE; NERVE CELLS; SYNCHRONIZATION; TOPOLOGY