skip to main content

Title: Nernst and Seebeck effects in HgTe/CdTe topological insulator

The Seebeck and Nernst effects in HgTe/CdTe quantum wells are studied using the tight-binding Hamiltonian and the nonequilibrium Green's function method. The Seebeck coefficient, S{sub c}, and the Nernst coefficient, N{sub c}, oscillate as a function of E{sub F}, where E{sub F} is the Fermi energy. The Seebeck coefficient shows peaks when the Fermi energy crosses the discrete transverse channels, and the height of the nth peak of the S{sub c} is [ln2/(1/2 +|n|)] for E{sub F} > 0. For the case E{sub F} < 0, the values of the peaks are negative, but the absolute values of the first five peaks are the same as those for E{sub F} > 0. The 6th peak of S{sub c} reaches the value [ln2/1.35] due to a higher density of states. When a magnetic field is applied, the Nernst coefficient appears. However, the values of the peaks for N{sub c} are all positive. For a weak magnetic field, the temperature suppresses the oscillation of the Seebeck and Nernst coefficients but increases their magnitude. For a large magnetic field, because of the highly degenerate Landau levels, the peaks of the Seebeck coefficient at position E{sub F}=−12, 10, 28meV, and Nernst coefficient at E{sub F}=−7, 10meV are robust against the temperature.
Authors:
; ;  [1]
  1. Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Hebei 050024 (China)
Publication Date:
OSTI Identifier:
22399344
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CADMIUM TELLURIDES; DENSITY OF STATES; GREEN FUNCTION; HAMILTONIANS; MAGNETIC FIELDS; MERCURY TELLURIDES; OSCILLATIONS; QUANTUM WELLS; SEEBECK EFFECT; TOPOLOGY