skip to main content

Title: Investigating nearby star-forming galaxies in the ultraviolet with HST/COS spectroscopy. I. Spectral analysis and interstellar abundance determinations

This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of nine nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the H II regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z = 0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multicomponent line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered, including line saturation, ionization corrections, and dust depletion. Ionization effects were quantified with ad hoc CLOUDY models reproducing the complex photoionization structure of the ionized and neutral gas surrounding the UV-bright sources. An 'average spectrum of amore » redshift z = 0 star-forming galaxy' was obtained from the average column densities of unsaturated profiles of neutral-gas species. This template can be used as a powerful tool for studies of the neutral ISM at both low and high redshift.« less
Authors:
; ; ;  [1] ;  [2]
  1. Space Telescope Science Institute, Baltimore, MD 21218 (United States)
  2. The Johns Hopkins University, Baltimore, MD 21218 (United States)
Publication Date:
OSTI Identifier:
22370253
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 795; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; DENSITY; DUSTS; ELEMENT ABUNDANCE; FAR ULTRAVIOLET RADIATION; GALAXIES; INTERSTELLAR SPACE; METALLICITY; METALS; PHOTOIONIZATION; RED SHIFT; SATURATION; SPECTRA; SPECTROSCOPY; STAR EVOLUTION; STARS; TELESCOPES