skip to main content

Title: SU-E-T-488: An Iso-Dose Curve Based Interactive IMRT Optimization System for Physician-Driven Plan Tuning

Purpose: In treatment plan optimization for Intensity Modulated Radiation Therapy (IMRT), after a plan is initially developed by a dosimetrist, the attending physician evaluates its quality and often would like to improve it. As opposed to having the dosimetrist implement the improvements, it is desirable to have the physician directly and efficiently modify the plan for a more streamlined and effective workflow. In this project, we developed an interactive optimization system for physicians to conveniently and efficiently fine-tune iso-dose curves. Methods: An interactive interface is developed under C++/Qt. The physician first examines iso-dose lines. S/he then picks an iso-dose curve to be improved and drags it to a more desired configuration using a computer mouse or touchpad. Once the mouse is released, a voxel-based optimization engine is launched. The weighting factors corresponding to voxels between the iso-dose lines before and after the dragging are modified. The underlying algorithm then takes these factors as input to re-optimize the plan in near real-time on a GPU platform, yielding a new plan best matching the physician's desire. The re-optimized DVHs and iso-dose curves are then updated for the next iteration of modifications. This process is repeated until a physician satisfactory plan is achieved.more » Results: We have tested this system for a series of IMRT plans. Results indicate that our system provides the physicians an intuitive and efficient tool to edit the iso-dose curves according to their preference. The input information is used to guide plan re-optimization, which is achieved in near real-time using our GPU-based optimization engine. Typically, a satisfactory plan can be developed by a physician in a few minutes using this tool. Conclusion: With our system, physicians are able to manipulate iso-dose curves according to their preferences. Preliminary results demonstrate the feasibility and effectiveness of this tool.« less
; ; ;  [1] ;  [2] ;  [3]
  1. UT Southwestern Medical Center, Dallas, TX (United States)
  2. Stanford University, Palo Alto, CA (United States)
  3. University of California, San Diego, La Jolla, CA (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States