skip to main content

SciTech ConnectSciTech Connect

Title: DENSE GAS TRACERS AND STAR FORMATION LAWS IN ACTIVE GALAXIES: APEX SURVEY OF HCN J = 4 → 3, HCO{sup +} J = 4 → 3, AND CS J = 7 → 6

We report HCN J = 4 → 3, HCO{sup +} J = 4 → 3, and CS J = 7 → 6 observations in 20 nearby star-forming galaxies with the Atacama Pathfinder EXperiment 12 m telescope. Combined with four HCN, three HCO{sup +}, and four CS detections from the literature, we probe the empirical link between the luminosity of molecular gas (L{sub gas}{sup ′}) and that of infrared emission (L {sub IR}), up to the highest gas densities (∼10{sup 6} cm{sup –3}) that have been probed so far. For nearby galaxies with large radii, we measure the IR luminosity within the submillimeter beam size (14''-18'') to match the molecular emission. We find linear slopes for L{sub CS} {sub J=7--6}{sup ′}-L {sub IR} and L{sub HCN} {sub J=4--3}{sup ′}-L {sub IR}, and a slightly super-linear slope for L{sub HCO{sup +}} {sub J=4--3}{sup ′}-L {sub IR}. The correlation of L{sub CS} {sub J=7--6}{sup ′}-L {sub IR} even extends over eight orders of luminosity magnitude down to Galactic dense cores, with a fit of log(L {sub IR}) =1.00(± 0.01) ×log(L{sub CS} {sub J=7--6}{sup ′}) + 4.03(± 0.04). Such linear correlations appear to hold for all densities >10{sup 4} cm{sup –3}, and indicate that star formation rate is notmore » related to the free-fall timescale for dense molecular gas.« less
Authors:
; ;  [1] ; ; ;  [2] ;  [3]
  1. Purple Mountain Observatory/Key Lab for Radio Astronomy, 2 West Beijing Road, Nanjing 210008 (China)
  2. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)
  3. Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030 (China)
Publication Date:
OSTI Identifier:
22365943
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 784; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CORRELATIONS; DENSITY; DETECTION; EMISSION; GALACTIC EVOLUTION; GALAXIES; HYDROCYANIC ACID; LUMINOSITY; MOLECULES; PHOTON EMISSION; PROBES; STAR EVOLUTION; STARS; TELESCOPES