skip to main content

Title: GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS

We constrain the jet opening angle and, for the first time, the off-axis observer angle for gamma-ray bursts in the Swift-XRT catalog by using the ScaleFit package to fit afterglow light curves directly to hydrodynamic simulations. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high-resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 226 bursts in total. We find that the jet half-opening angle varies widely but is commonly less than 0.1 rad. The distribution of the electron spectral index is also broad, with a median at 2.30. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and affects the beaming-corrected total energies of gamma-ray bursts.
Authors:
; ;  [1] ;  [2]
  1. Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)
  2. Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
Publication Date:
OSTI Identifier:
22364577
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 799; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AFTERGLOW; CATALOGS; COSMIC GAMMA BURSTS; DATA ANALYSIS; DIAGRAMS; HYDRODYNAMICS; INDEXES; JETS; RED SHIFT; RELATIVISTIC RANGE; S CODES; SHOCK WAVES; STAR MODELS; TWO-DIMENSIONAL CALCULATIONS; VISIBLE RADIATION