skip to main content

SciTech ConnectSciTech Connect

Title: Controlled synthesis and gas sensing properties of In{sub 2}O{sub 3} with different phases from urchin-like InOOH microspheres

Highlights: • Preparation of nanostructured In{sub 2}O{sub 3} microspheres. • Morphology and phase control of In{sub 2}O{sub 3}. • Gas sensors based on the In{sub 2}O{sub 3} microspheres exhibit excellent sensing properties for the detection of formaldehyde. - Abstract: Urchin-like InOOH microspheres were successfully prepared by a convenient and controllable method. Such experimental parameters as solvents and complexing reagents on the formation of the urchin-like InOOH microspheres were investigated. Scanning electron microscopy, X-ray diffraction and infrared spectroscopy were employed to investigate the evolution process of the urchin-like InOOH precursors. Furthermore, the formation mechanism of the urchin-like InOOH microspheres was proposed. By annealing the urchin-like InOOH precursor at different temperatures under ambient pressure, rhombohedral corundum-type indium oxide (rh-In{sub 2}O{sub 3}), cubic bixbyite-type indium oxide (c-In{sub 2}O{sub 3}) and mixed phases of rh-In{sub 2}O{sub 3} and c-In{sub 2}O{sub 3} were obtained. The gas sensing properties of the prepared In{sub 2}O{sub 3} samples were examined. It was found that the sensors based on the prepared In{sub 2}O{sub 3} samples exhibited excellent response and selectivity to formaldehyde.
Authors:
;
Publication Date:
OSTI Identifier:
22348642
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 53; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION SPECTROSCOPY; ANNEALING; CONTROL; DETECTION; FORMALDEHYDE; INDIUM OXIDES; INFRARED SPECTRA; NANOSTRUCTURES; SCANNING ELECTRON MICROSCOPY; SENSORS; SYNTHESIS; TRIGONAL LATTICES; X-RAY DIFFRACTION