skip to main content

SciTech ConnectSciTech Connect

Title: Fabrication of nanofibrous A- or B-sites substituted LaCoO{sub 3} perovskites with macroscopic structures and their catalytic applications

Graphical abstract: Fabrication of nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Furthermore, their application for the combustion of carbon black (CB), which is a model of particulate matter exhausted from diesel engines, was demonstrated. - Highlights: • Nanofibrous perovskites with macroscopic shapes were successfully obtained. • CNFs template method used here is facile, effective and reproducible. • This method might be applicable to other novel material fabrication. • The obtained materials show superior catalytic activity in soot combustion. - Abstract: Fabrication of nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05, 0.1, 0.2) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.2, 0.5, 0.8) perovskite-type oxides with macroscopic structures can be successfully achieved by using carbon nanofibers (CNFs) as templates. Field emission scanning electron microscopy (FE-SEM), coupled with X-ray diffraction (XRD) analysis confirmed the template effect and formation of the perovskite-type oxides on the macroscopic substrate. It turned out that this facile method can ensure the desired single-phase perovskite-type oxides formation by controlling the corresponding metal ratio during the preparation procedure. In addition,more » the immobilized nanofibrous La{sub 1−x}Ce{sub x}CoO{sub 3} (x = 0.05) and LaMn{sub x}Co{sub 1−x}O{sub 3} (x = 0.5) perovskite-type oxides can greatly decrease the combustion temperature of nanosized carbon black particles, which has the high potential application prospects in the treatment of diesel soot particles.« less
Authors:
 [1] ;  [1] ;  [2] ; ;  [1] ;  [3] ;  [4]
  1. College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)
  2. Department of Chemistry, Shanxi Datong University, Datong 037009 (China)
  3. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084 (China)
  4. (China)
Publication Date:
OSTI Identifier:
22348605
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 51; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON BLACK; CARBON FIBERS; DIESEL ENGINES; FABRICATION; FIELD EMISSION; NANOSTRUCTURES; OXIDES; PEROVSKITE; SCANNING ELECTRON MICROSCOPY; SUBSTRATES; X-RAY DIFFRACTION