skip to main content

Title: A tidally stripped stellar component of the Magellanic bridge

Deep photometry of the Small Magellanic Cloud (SMC) stellar periphery (R = 4°, 4.2 kpc) is used to study its line-of-sight depth with red clump (RC) stars. The RC luminosity function is affected little by young (≲1 Gyr) blue-loop stars in these regions because their main-sequence counterparts are not observed in the color-magnitude diagrams. The SMCs eastern side is found to have a large line-of-sight depth (∼23 kpc) while the western side has a much shallower depth (∼10 kpc), consistent with previous photographic plate photometry results. We use a model SMC RC luminosity function to deconvolve the observed RC magnitudes and construct the density function in distance for our fields. Three of the eastern fields show a distance bimodality with one component at the 'systemic' ∼67 kpc SMC distance and a second component at ∼55 kpc. Our data are not reproduced well by the various extant Magellanic Cloud and Stream simulations. However, the models predict that the known H I Magellanic Bridge (stretching from the SMC eastward toward the Large Magellanic Cloud, LMC) has a decreasing distance with angle from the SMC and should be seen in both the gaseous and stellar components. From comparison with these models, we concludemore » that the most likely explanation for our newly identified ∼55 kpc stellar structure in the eastern SMC is a stellar counterpart of the H I Magellanic Bridge that was tidally stripped from the SMC ∼200 Myr ago during a close encounter with the LMC. This discovery has important implications for microlensing surveys of the SMC.« less
Authors:
; ;  [1] ; ;  [2] ;  [3]
  1. Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States)
  2. Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)
  3. Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)
Publication Date:
OSTI Identifier:
22348422
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 779; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COLOR; COMPARATIVE EVALUATIONS; DENSITY; DISTANCE; INTERACTIONS; LUMINOSITY; MAGELLANIC CLOUDS; PHOTOGRAPHY; PHOTOMETRY; STARS; STREAMS