skip to main content

Title: Ta{sub 2}O{sub 5}-based high-K dielectric thin films from solution processed at low temperatures

Highlights: • Ta{sub 2}O{sub 5}–Al{sub 2}O{sub 3}–SiO{sub 2} (Ta:Al:Si = 8:1:1 atomic ratio) and Ta{sub 2}O{sub 5} films were processed from solutions. • The XRD-amorphous films, heated at or below 400 °C, are smooth (RMS < 0.5 nm). • The dielectric permittivity of the single- and mixed-oxide films heated at 400 °C is 27 and 22, respectively. • The current–voltage characteristics of the mixed-oxide films reveal the Poole–Frenkel behaviour. - Abstract: Ta{sub 2}O{sub 5}-based thin films were prepared by chemical solution deposition at temperatures not exceeding 400 °C. The aim of the work was to investigate the properties of high-K dielectric films of the ternary composition Ta{sub 2}O{sub 5}–Al{sub 2}O{sub 3}–SiO{sub 2} with the Ta:Al:Si = 8:1:1 atomic ratio. Pure Ta{sub 2}O{sub 5} samples were also prepared. All thin films were amorphous, and had smooth and flat surfaces with the average roughness of below 0.5 nm. The mixed oxide samples heated between 300 °C and 400 °C showed little difference in the dielectric permittivity with the values ranging from about 19 to 22. The Ta{sub 2}O{sub 5} film heated at 400 °C exhibited the highest permittivity of about 27. The current–voltage measurements revealed considerably improved characteristics of the Ta{sub 2}O{submore » 5}–Al{sub 2}O{sub 3}–SiO{sub 2} samples within the investigated heating temperature range, with a significant overall decrease of the leakage currents in contrast to that of the pure Ta{sub 2}O{sub 5} thin films.« less
Authors:
 [1] ;  [2] ;  [1] ; ;  [3] ;  [1]
  1. Electronic Ceramics Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)
  2. (Slovenia)
  3. Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana (Slovenia)
Publication Date:
OSTI Identifier:
22345221
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 50; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM OXIDES; ATOMIC FORCE MICROSCOPY; DEPOSITION; LEAKAGE CURRENT; PERMITTIVITY; SILICA; SILICON OXIDES; SOL-GEL PROCESS; SOLUTIONS; TANTALUM OXIDES; THIN FILMS; X-RAY DIFFRACTION