skip to main content

SciTech ConnectSciTech Connect

Title: Diversity combining in laser Doppler vibrometry for improved signal reliability

Because of the speckle nature of the light reflected from rough surfaces the signal quality of a vibrometer suffers from varying signal power. Deep signal outages manifest themselves as noise bursts and spikes in the demodulated velocity signal. Here we show that the signal quality of a single point vibrometer can be substantially improved by diversity reception. This concept is widely used in RF communication and can be transferred into optical interferometry. When two statistically independent measurement channels are available which measure the same motion on the same spot, the probability for both channels to see a signal drop-out at the same time is very low. We built a prototype instrument that uses polarization diversity to constitute two independent reception channels that are separately demodulated into velocity signals. Send and receive beams go through different parts of the aperture so that the beams can be spatially separated. The two velocity channels are mixed into one more reliable signal by a PC program in real time with the help of the signal power information. An algorithm has been developed that ensures a mixing of two or more channels with minimum resulting variance. The combination algorithm delivers also an equivalent signal powermore » for the combined signal. The combined signal lacks the vast majority of spikes that are present in the raw signals and it extracts the true vibration information present in both channels. A statistical analysis shows that the probability for deep signal outages is largely decreased. A 60 fold improvement can be shown. The reduction of spikes and noise bursts reduces the noise in the spectral analysis of vibrations too. Over certain frequency bands a reduction of the noise density by a factor above 10 can be shown.« less
Authors:
 [1]
  1. Polytec GmbH, Polytec Platz 1-7. 76337 Waldbronn (Germany)
Publication Date:
OSTI Identifier:
22311319
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1600; Journal Issue: 1; Conference: AIVELA 2014: 11. international conference on vibration measurements by laser and noncontact techniques, Ancona (Italy), 25-27 Jun 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; APERTURES; INTERFEROMETRY; LASER RADIATION; NOISE; POLARIZATION; PROBABILITY; RELIABILITY; SIGNALS; SURFACES; VELOCITY; VISIBLE RADIATION