skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exact stochastic unraveling of an optical coherence dynamics by cumulant expansion

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4898354· OSTI ID:22310728
;  [1];  [2];  [3]
  1. Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-121 16 Prague 2 (Czech Republic)
  2. Mads Clausen Insitute, University of Southern Denmark, 6400 Sønderborg (Denmark)
  3. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. The method can be used with an arbitrary environment characterized by a general correlation function and arbitrary coupling strength. It is formally exact for harmonic environments, and it can be used with arbitrary temperature. Time evolution of an optically excited Frenkel exciton dimer representing a molecular exciton interacting with a charge transfer state is calculated by the proposed method. We calculate the evolution of the optical coherence elements of the density matrix and linear absorption spectrum, and compare them with the predictions of standard simulation methods.

OSTI ID:
22310728
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English