skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4894419· OSTI ID:22308364
; ;  [1];  [2];  [3]
  1. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France)
  2. Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation)
  3. Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

OSTI ID:
22308364
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English