skip to main content

SciTech ConnectSciTech Connect

Title: On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flowmore » to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m{sup 2°}C/W for free standing PV arrays at strong wind speeds, v{sub W}>7m/s, up to around 0.05 m{sup 2°}C/W for the case of flexible PV modules which make part of the roof in a BIPV system.« less
Authors:
;  [1]
  1. Renewable Energy Systems Lab., Mechanical Engineering Dept., Technological Educational Institute of Western Greece, Koukouli 26 334, Patra (Greece)
Publication Date:
OSTI Identifier:
22307933
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1618; Journal Issue: 1; Conference: ICCMSE 2014: International conference on computational methods in science and engineering 2014, Athens (Greece), 4-7 Apr 2014; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; COMPARATIVE EVALUATIONS; HEAT TRANSFER; INCLINATION; MATHEMATICAL MODELS; PHOTOVOLTAIC EFFECT; SILICON SOLAR CELLS; SOLAR RADIATION; VELOCITY; WIND