skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectroscopic enhancement in nanoparticles embedded glasses

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4897092· OSTI ID:22307898
;  [1]
  1. Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

OSTI ID:
22307898
Journal Information:
AIP Conference Proceedings, Vol. 1617, Issue 1; Conference: ICTAP 2013: 3. international conference on theoretical and applied physics, Malang, East Java (Indonesia), 10-11 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English