skip to main content

Title: Liouvillian integrability of gravitating static isothermal fluid spheres

We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R² and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and formore » n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.« less
Authors:
 [1] ;  [2]
  1. ENEA-C. R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy)
  2. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)
Publication Date:
OSTI Identifier:
22305860
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 10; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DE SITTER GROUP; DE SITTER SPACE; DIFFERENTIAL EQUATIONS; EINSTEIN FIELD EQUATIONS; EQUATIONS OF STATE; FLUIDS; MATHEMATICAL SOLUTIONS; NONLINEAR PROBLEMS; SPHERES; SPHERICAL CONFIGURATION