skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

Journal Article · · Materials Characterization
 [1];  [1];  [2];  [1]
  1. Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia)
  2. Pontificia Universidad Javeriana Seccional Cali, Facultad de Ingeniería, Departamento de Ciencias de la Ingeniería y la Producción (Colombia)

A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 °C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: • Mobility and desorption competition generates a critical temperature. • A microstructure anisotropy related to the local strain was observed in thin films. • Adatom mobility and desorption influence grain size and microstrain.

OSTI ID:
22288743
Journal Information:
Materials Characterization, Vol. 88; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English