skip to main content

SciTech ConnectSciTech Connect

Title: Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles

Graphical abstract: - Highlights: • Metallic silver was decorated in mSiO{sub 2} with grafted hemiaminal functional groups. • Synthesized nanoparticles were used for preparation of glycerol based nanofluids. • The effect of temperature, weight fraction of mSiO{sub 2} and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO{sub 2}) nanoparticles as well as hemiaminal grafted mSiO{sub 2} decorated by metallic silver (Ag/mSiO{sub 2}) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis spectroscopy, inductively coupled plasma (ICP) and N{sub 2} adsorption–desorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO{sub 2} and Ag/mSiO{sub 2} nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO{sub 2} increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO{sub 2} (Ag/mSiO{sub 2}) up to 2.98% caused an enhancement in themore » thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles.« less
Authors:
 [1] ;  [1] ;  [2]
  1. Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of)
  2. (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22285144
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 48; Journal Issue: 10; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; GLYCEROL; NANOSTRUCTURES; SCANNING ELECTRON MICROSCOPY; SILICA; SILVER; SURFACE PROPERTIES; THERMAL CONDUCTIVITY; X-RAY DIFFRACTION