skip to main content

SciTech ConnectSciTech Connect

Title: Enhancing nanoscale SEM image segmentation and reconstruction with crystallographic orientation data and machine learning

Current methods of image segmentation and reconstructions from scanning electron micrographs can be inadequate for resolving nanoscale gaps in composite materials (1–20 nm). Such information is critical to both accurate material characterizations and models of piezoresistive response. The current work proposes the use of crystallographic orientation data and machine learning for enhancing this process. It is first shown how a machine learning algorithm can be used to predict the connectivity of nanoscale grains in a Nickel nanostrand/epoxy composite. This results in 71.9% accuracy for a 2D algorithm and 62.4% accuracy in 3D. Finally, it is demonstrated how these algorithms can be used to predict the location of gaps between distinct nanostrands — gaps which would otherwise not be detected with the sole use of a scanning electron microscope. - Highlights: • A method is proposed for enhancing the segmentation/reconstruction of SEM images. • 3D crystallographic orientation data from a nickel nanocomposite is collected. • A machine learning algorithm is used to detect trends in adjacent grains. • This algorithm is then applied to predict likely regions of nanoscale gaps. • These gaps would otherwise be unresolved with the sole use of an SEM.
Authors:
;
Publication Date:
OSTI Identifier:
22285082
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 83; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACCURACY; ALGORITHMS; COMPOSITE MATERIALS; CRYSTALLOGRAPHY; DIFFRACTION; ELECTRON SCANNING; EPOXIDES; MICROSTRUCTURE; NANOSTRUCTURES; NICKEL; ORIENTATION; SCANNING ELECTRON MICROSCOPY