skip to main content

Title: Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.
Authors:
;  [1]
  1. Department of Electrical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, PO Box 4386, Brasília - DF, 70919-970 (Brazil)
Publication Date:
OSTI Identifier:
22280313
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1598; Journal Issue: 1; Conference: LDSD 2011: 7. international conference on low dimensional structures and devices, Telchac (Mexico), 22-27 May 2011; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMIC FORCE MICROSCOPY; COMPARATIVE EVALUATIONS; DOPED MATERIALS; ELECTRIC CONDUCTIVITY; ELECTRIC CURRENTS; ELECTRODES; FLUORINE; GRAIN BOUNDARIES; ORGANIC SOLAR CELLS; POLYCRYSTALS; SPACE DEPENDENCE; TIN OXIDES