skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dosimetric and Radiobiological Consequences of Computed Tomography–Guided Adaptive Strategies for Intensity Modulated Radiation Therapy of the Prostate

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
; ;  [1];  [2]; ;  [3]
  1. London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada)
  2. Philips Healthcare (Radiation Oncology Systems), Fitchburg, Wisconsin (United States)
  3. Department of Medical Biophysics, Western University, London, ON (Canada)

Purpose: To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. Methods and Materials: We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose–volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D{sub 95}, tumor control probability, V{sub 70Gy}, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. Results: The CTV D{sub 95} for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D{sub 95} values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D{sub 95} values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V{sub 70Gy} and NTCP) remained within acceptable limits. Conclusions: The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes the need for subsequent dose replanning.

OSTI ID:
22278264
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 87, Issue 5; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English