skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Black holes in an asymptotically safe gravity theory with higher derivatives

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1]
  1. Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918-4, Beijing 100049 (China)

We present a class of spherically symmetric vacuum solutions to an asymptotically safe theory of gravity containing high-derivative terms. We find quantum corrected Schwarzschild-(anti)-de Sitter solutions with running gravitational coupling parameters. The evolution of the couplings is determined by their corresponding renormalization group flow equations. These black holes exhibit properties of a classical Schwarzschild solution at large length scales. At the center, the metric factor remains smooth but the curvature singularity, while softened by the quantum corrections, persists. The solutions have an outer event horizon and an inner Cauchy horizon which equate when the physical mass decreases to a critical value. Super-extremal solutions with masses below the critical value correspond to naked singularities. The Hawking temperature of the black hole vanishes when the physical mass reaches the critical value. Hence, the black holes in the asymptotically safe gravitational theory never completely evaporate. For appropriate values of the parameters such stable black hole remnants make excellent dark matter candidates.

OSTI ID:
22275417
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2010, Issue 09; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English

Similar Records

Black holes and cosmic censorship
Thesis/Dissertation · Mon Jan 01 00:00:00 EST 1979 · OSTI ID:22275417

Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography
Journal Article · Mon May 15 00:00:00 EDT 2006 · Physical Review. D, Particles Fields · OSTI ID:22275417

Faddeev-Popov ghosts and (1+1)-dimensional black-hole evaporation
Journal Article · Sun Nov 15 00:00:00 EST 1992 · Physical Review, D (Particles Fields); (United States) · OSTI ID:22275417