skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high-pressure route to thermoelectrics with low thermal conductivity: The solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2} (x=0.1–0.6)

Journal Article · · Journal of Solid State Chemistry
; ; ; ;  [1]; ; ;  [2];  [3]
  1. LMU Munich, Department of Chemistry, Butenandtstraße 5-13 (D), 81377 Munich (Germany)
  2. University of Augsburg, Institut für Physik, Universitätsstraße 1, 86159 Augsburg (Germany)
  3. Leipzig University, IMKM, Scharnhorststraße 20, 04275 Leipzig (Germany)

Metastable rocksalt-type phases of the solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2} (x=0.1, 0.2, 0.4, 0.5 and 0.6) were prepared by high-pressure synthesis at 2.5 GPa and 400 °C. In these structures, the coordination number of In{sup 3+} is six, in contrast to chalcopyrite ambient-pressure AgInTe{sub 2} with fourfold In{sup 3+} coordination. Transmission electron microscopy shows that real-structure phenomena and a certain degree of short-range order are present, yet not very pronounced. All three cations are statistically disordered. The high degree of disorder is probably the reason why AgIn{sub x}Sb{sub 1−x}Te{sub 2} samples with 0.4<0.6 exhibit very low thermal conductivities with a total κ<0.5 W/K m and a lattice contribution of κ{sub ph} ∼0.3 W/K m at room temperature. These are lower than those of other rocksalt-type tellurides at room temperature; e.g. the well-known thermoelectric AgSbTe{sub 2} (κ ∼0.6 W/K m). The highest ZT value (0.15 at 300 K) is observed for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, mainly due to its high Seebeck coefficient of 160 µV/K. Temperature-dependent X-ray powder patterns indicate that the solid solutions are metastable at ambient pressure. At 150 °C, the quaternary compounds decompose into chalcopyrite-type AgInTe{sub 2} and rocksalt-type AgSbTe{sub 2}. - Graphical abstract: Reaction scheme, temperature characteristics of the ZT value and a selected-area electron diffraction pattern (background) of AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, which crystallizes in a rocksalt-type structure with statistical cation disorder. Display Omitted - Highlights: • High-pressure synthesis yields the novel solid solution series AgIn{sub x}Sb{sub 1−x}Te{sub 2}. • In contrast to AgInTe{sub 2}, the compounds are inert at ambient pressure. • HRTEM shows no pronounced short-range order in the disordered NaCl-type structure. • The metastable phases exhibit very low total thermal conductivities <0.5 W/K m. • ZT values of 0.15 at room temperature were measured for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}.

OSTI ID:
22274099
Journal Information:
Journal of Solid State Chemistry, Vol. 206; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English