skip to main content

SciTech ConnectSciTech Connect

Title: Fe{sub 2.25}W{sub 0.75}O{sub 4}/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property

Fe{sub 2.25}W{sub 0.75}O{sub 4}/reduced graphene oxide (RGO) composites were prepared for application of novel bifunctional photocatalyst via simple one-pot hydrothermal method, employing graphene oxide (GO), Na{sub 2}WO{sub 4}, FeSO{sub 4} and sodium dodecyl benzene sulfonate (SDBS) as the precursors. Transmission electron microscope (TEM) results indicate that the well-dispersed Fe{sub 2.25}W{sub 0.75}O{sub 4} nanoparticles were deposited on the surface of RGO sheets homogeneously. Magnetic characterization reveals that Fe{sub 2.25}W{sub 0.75}O{sub 4} and Fe{sub 2.25}W{sub 0.75}O{sub 4}/RGO show ferromagnetic behaviors. So this novel bifunctional photocatalyst could achieve magnetic separation and collection with the aid of external magnet. The composites exhibit enhanced photocatalytic performance on degradation of methyl orange (MO) compared with pure Fe{sub 2.25}W{sub 0.75}O{sub 4} under low-power ultraviolet light irradiation due to the introduction of RGO. Moreover, this hybrid catalyst possesses long-term excellent photocatalytic performance due to its good thermal stability. This bifunctional photocatalyst, which combines magnetic property and excellent photocatalytic activity, would be a perfect candidate in applications of catalytic elimination of environmental pollutants and other areas. - Graphical abstract: Magnetically recyclable Fe{sub 2.25}W{sub 0.75}O{sub 4}/reduced graphene oxide nanocomposites with enhanced photocatalytic property Display Omitted - Highlights: ●Fe{sub 2.25}W{sub 0.75}O{sub 4} growth, deposition and GO reduction occurred simultaneously. ●Composite possessedmore » ferromagnetic and enhanced photocatalytic properties. ●Composite is utilized as a magnetically separable and high-efficient photocatalyst. ●Photocatalyst showed good photocatalytic and thermal stability during cyclic use.« less
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22274087
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 205; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; BENZENE; CATALYSTS; COMPOSITE MATERIALS; DEPOSITION; DEPOSITS; GRAPHENE; HYDROTHERMAL SYNTHESIS; IRON SULFATES; IRRADIATION; MAGNETIC PROPERTIES; MAGNETS; METHYL ORANGE; NANOSTRUCTURES; OXIDES; PHOTOCATALYSIS; POLLUTANTS; SODIUM TUNGSTATES; STABILITY