skip to main content

Title: Effects of TiO{sub 2} addition and electron irradiation on superconducting and mechanical properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi-2212) superconductor

Titanium Oxide (TiO{sub 2}) compounds having very high melting point with lower heat capacity, is an excellent candidate for reinforcement of brittle materials such as superconductor ceramics. In addition to high melting point, the TiO{sub 2} is also capable of establishing flux pinning centers in bismuth-based superconductors such as the Bi-2212. To further enhance the flux pinning properties, irradiation is one of the techniques that can be used to re-create the required point defects. In this study, the effects of TiO{sub 2} addition and electron irradiation on Bi-2212 superconductor were studied. TiO{sub 2} added Bi-2212 superconductor samples with 5%, 10% and 15% weight percentage addition respectively, were prepared using the conventional solid-state reaction method. The samples were irradiated with electron beam with radiation dose of 100 KGray. Characterization was performed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The transition temperature (T{sub c}) and the critical current density (J{sub c}) of the samples were also measured. The XRD patterns for all the samples show well-defined peaks all of which could be indexed on the basis of a Bi-2212 phase structure. In addition, the XRD patterns indicate that electron irradiation did not change the structure of Bi-2212 superconducting phase. Resultsmore » of SEM micrographs show disorientation in the texture of the microstructure for samples that are subjected to electron irradiation. The grains are seen to align randomly with higher degree of orientation. With regard to TiO{sub 2} additions, only small TiO{sub 2} addition sustained the superconducting properties upon irradiation. Addition of more than 5% weight percentage of TiO{sub 2} degrades the superconducting properties of the irradiated samples. Formation of weak-links may result in higher grain boundaries orientation within the superconducting grains and thus deteriorates the inter-grains connectivity and resulted in lower T{sub c} and degradation of J{sub c}. The strength of the superconductor reduced significantly when subjected to electron irradiation.« less
Authors:
;  [1] ;  [2]
  1. Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)
  2. Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)
Publication Date:
OSTI Identifier:
22266064
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1584; Journal Issue: 1; Conference: iNuSTEC2013: International nuclear science, technology and engineering conference 2013, Kuala Lumpur (Malaysia), 30 Sep - 2 Oct 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CRITICAL CURRENT; CURRENT DENSITY; ELECTRONS; GRAIN BOUNDARIES; IRRADIATION; MAGNETIC FLUX; MECHANICAL PROPERTIES; MELTING POINTS; POINT DEFECTS; RADIATION DOSES; SCANNING ELECTRON MICROSCOPY; SOLIDS; SPECIFIC HEAT; SUPERCONDUCTORS; TITANIUM OXIDES; X-RAY DIFFRACTION