skip to main content

SciTech ConnectSciTech Connect

Title: Development of steady-state operation using ICH in the LHD

Long-pulse discharge with the electron density n{sub e0} of 1 × 10{sup 19} m{sup −3}, electron temperature T{sub e0} of 2.5 keV, discharge length t{sub dis} of 19 minutes and heating power P{sub inject} of 1MW, is demonstrated using the HAS antenna and the PA antenna for ion cyclotron heating (ICH) and increasing in the power of electron cyclotron heating (ECH). The HAS antenna is designed to phase dipole and excite ideal fast wave with parallel electric field kept small, and low impurity generation and accumulation are achieved on the steady-state discharge by weak parasitic heating around antennas. On the long-pulse discharge, the radiation measured by bolometer is kept smaller than 20% for injection power, and the heat load to divertor is approximately 60 % with low energetic particle losses. The heat load ratio to divertor is not as a function of injection power around 1MW, and energy confinement has been kept during the steady-state discharge.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  [1] more »; « less
  1. National Institute for Fusion Science, Toki (Japan)
Publication Date:
OSTI Identifier:
22263912
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1580; Journal Issue: 1; Conference: 20. topical conference on radiofrequency power in plasmas, Sorrento (Italy), 25-28 Jun 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CYCLOTRONS; DIVERTORS; ECR HEATING; ELECTRIC FIELDS; ELECTRON DENSITY; ELECTRON TEMPERATURE; HEATING LOAD; PARTICLE LOSSES; PULSES; STEADY-STATE CONDITIONS