skip to main content

Title: Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H{sup −} ion sources

A RF-driven, Cs-enhanced H{sup −} ion source feeds the SNS accelerator with a high current (typically >50 mA), ∼1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a means for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN (aluminum nitrite) chamber and an external RF antenna are also briefly discussed.
Authors:
; ; ; ; ;  [1]
  1. Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
Publication Date:
OSTI Identifier:
22253644
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 2; Conference: ICIS 2011: 14. international conference on ion sources, Giardini-Naxos, Sicily (Italy), 12-16 Sep 2011; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACCELERATORS; ALUMINIUM NITRIDES; ANTENNAS; BEAM CURRENTS; EMISSION SPECTROSCOPY; ION SOURCES; NEUTRON SOURCES; OPTICAL SPECTROMETERS; PLASMA; PLASMA DIAGNOSTICS; SPALLATION; TIN SULFIDES