skip to main content

Title: Electronic structure and reactivity in water splitting of the iron oxide dimers and their hexacarbonyls: A density functional study

The iron oxide dimers (FeO){sub 2} and their peroxide isomers are studied with the B3LYP density functional as bare clusters and as hexacarbonyls. Among the bare clusters the planar four-member ring structures are more stable than the non-planar ones and the rhombic dioxide Fe{sub 2}O{sub 2} with antiferromagnetically ordered electrons on iron centers is the global minimum. Water adsorption on the bare diiron dioxide is exothermic, but dissociation does not occur. Carbonylation favors a non-planar Fe{sub 2}O{sub 2} ring for both the dioxides and the peroxides and high electron density at the Fe centers is induced, evidenced by the natural charge distribution, the high proton affinity, and the values of global electronegativity and hardness. The iron dioxide hexacarbonyl Fe{sub 2}O{sub 2}(CO){sub 6} is diamagnetic in the state of the global minimum. It is separated from the next low-lying triplet state by a small energy gap of 0.22 eV. Time-dependent density functional theory methods were applied to examine electron excitations from the ground state to the low-lying triplet states in the hexacarbonyls and their adsorption complexes with water. Singlet-to-triplet state excitations occur via ligand-to-metal charge transfer in the hexacarbonyls; in the adsorption complexes excitations from the oxygen lone pairs to themore » adsorption center also occur and they appear in the IR-visible region. The lowest energy singlet and triplet state reaction paths for water splitting were followed. On the singlet potential energy surface (PES), water splitting is spontaneous, while for the triplet PES an activation barrier of 14.1 kJ mol{sup −1} was determined.« less
Authors:
 [1] ;  [2]
  1. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria)
  2. Institute for Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria)
Publication Date:
OSTI Identifier:
22253634
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ADSORPTION; CARBON MONOXIDE; CARBONYLATION; DENSITY FUNCTIONAL METHOD; DIMERS; ELECTRONIC STRUCTURE; ELECTRONS; EXCITATION; GROUND STATES; IRON; IRON OXIDES; OXYGEN; PEROXIDES; POTENTIAL ENERGY; TIME DEPENDENCE; TRIPLETS; WATER