skip to main content

Title: Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier

Based on a rectilinear sheet electron beam propagating through the tunnel of a staggered double-grating arrays waveguide (SDGAW) slow-wave structure (SWS), a three dimensional field theory for describing the modes and the beam-wave interaction is presented, in which the higher order terms inside the grooves are retained. The fields' distribution and the conductivity losses are also calculated utilizing the theoretical model. With the optimized parameters of the SWS and the electron beam, a 1 THz SDGAW Cerenkov traveling wave amplifier may obtain a moderate net gain (the peak gain is 12.7 dB/cm) and an ultra 3 dB wideband (0.19 THz) considering the serious Ohmic losses. The theoretical results have been compared with those calculated by 3D HFSS code and CST STUDIO particle-in-cell simulations.
Authors:
;  [1] ;  [2] ; ; ; ;  [1]
  1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22253343
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMPLIFIERS; ELECTRON BEAMS; FIELD THEORIES; GAIN; GRATINGS; SIMULATION; TRAVELLING WAVES; WAVEGUIDES