skip to main content

SciTech ConnectSciTech Connect

Title: Properties of gravitationally equilibrated Yukawa systems—A molecular dynamics study

Using 2D Molecular Dynamics simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter Γ, screening parameter κ, and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquires sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green-Kubo’s formalism does not agree with that obtained from Einstein-Smoluchowski diffusion. A 2D angular-radial pair correlation function g(r, θ) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid.
Authors:
; ;  [1]
  1. Institute for Plasma Research, Bhat-Village, Gujarat, Gandhinagar 382428 (India)
Publication Date:
OSTI Identifier:
22253332
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 74 ATOMIC AND MOLECULAR PHYSICS; CORRELATION FUNCTIONS; LIQUIDS; MOLECULAR DYNAMICS METHOD; SELF-DIFFUSION