skip to main content

SciTech ConnectSciTech Connect

Title: Onset of simple liquid behaviour in modified water models

The transition to simple liquid behaviour is studied in a set of modified hybrid water models where the potential energy contribution of the Lennard-Jones dispersion-repulsion contribution is progressively enhanced relative to the electrostatic contribution. Characteristics of simple liquid behaviour that indicate the extent to which a given system can be mapped onto an inverse power law fluid are examined, including configurational energy-virial correlations, functional form of temperature dependence of the excess entropy along isochores, and thermodynamic and excess entropy scaling of diffusivities. As the Lennard-Jones contribution to the potential energy function increases, the strength of the configurational energy-virial correlations increases. The Rosenfeld-Tarazona temperature dependence of the excess entropy is found to hold for the range of state points studied here for all the hybrid models, regardless of the degree of correlating character. Thermodynamic scaling is found to hold for weakly polar fluids with a moderate degree of energy-virial correlations. Rosenfeld-scaling of transport properties is found not to be necessarily linked with the strength of energy-virial correlations but may hold for systems with poor thermodynamic scaling if diffusivities and excess entropies show correlated departures from the isomorph-invariant behaviour characteristic of approximate inverse power law fluids. The state-point dependence of the configurationalmore » energy-virial correlation coefficient and the implications for thermodynamic and excess entropy scalings are considered.« less
Authors:
;  [1]
  1. Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India)
Publication Date:
OSTI Identifier:
22253085
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DISPERSIONS; ENTROPY; HYBRIDIZATION; LIQUIDS; POTENTIAL ENERGY; TEMPERATURE DEPENDENCE; WATER