skip to main content

SciTech ConnectSciTech Connect

Title: Kinetic Alfvén solitary and rogue waves in superthermal plasmas

We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low β plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter κ, plasma β, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma β increases. The findings of this study may find applications to low β plasmas in astrophysical environments where particles are superthermally distributed.
Authors:
; ;  [1]
  1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, 264209 Weihai (China)
Publication Date:
OSTI Identifier:
22251855
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMPLITUDES; ASTROPHYSICS; ELECTRONS; KORTEWEG-DE VRIES EQUATION; MATHEMATICAL SOLUTIONS; NONLINEAR PROBLEMS; PERTURBATION THEORY; PLASMA; SOLITONS