skip to main content

Title: Flexible nuclear screening approximation to the two-electron spin–orbit coupling based on ab initio parameterization

The derivation, implementation, and validation of a new approximation to the two-electron spin–orbit coupling (SOC) terms is reported. The approximation, referred to as flexible nuclear screening spin–orbit, is based on the effective one-electron spin–orbit operator and accounts for two-electron SOC effects by screening nuclear charges. A highly flexible scheme for the nuclear screening is developed, mainly using parameterization based on ab initio atomic SOC calculations. Tabulated screening parameters are provided for contracted and primitive Gaussian-type basis functions of the ANO-RCC basis set for elements from H to Cm. The strategy for their adaptation to any other Gaussian basis set is presented and validated. A model to correct for the effect of splitting of transition metal d orbitals on their SOC matrix elements is introduced. The method is applied to a representative set of molecules, and compared to exact treatment and other approximative approaches at the same level of relativistic theory. The calculated SOC matrix elements are in very good agreement with their “exact” values; deviation below 1% is observed on average. The presented approximation is considered to be generally applicable, simple to implement, highly efficient, and accurate.
Authors:
;  [1]
  1. Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)
Publication Date:
OSTI Identifier:
22251322
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 139; Journal Issue: 20; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 97 MATHEMATICAL METHODS AND COMPUTING; APPROXIMATIONS; COUPLING; ELECTRONS; MATRIX ELEMENTS; NUCLEAR SCREENING; TRANSITION ELEMENTS