skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems

Journal Article · · Environmental Impact Assessment Review

Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxes in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily − 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of − 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: • Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. • Temporary storage of bio-C does not always equate to a climate cooling impact. • 1 unit of bio-C stored over a time horizon does not always equate to − 1 unit CO{sub 2}eq. • Discrepancies of climate change impact quantification in literature are clarified.

OSTI ID:
22246905
Journal Information:
Environmental Impact Assessment Review, Vol. 43; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0195-9255
Country of Publication:
United States
Language:
English