skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023

Conference ·
OSTI ID:22224831
; ; ; ;  [1]
  1. Idaho State University: 1776 Science Center Dr., Idaho Falls, ID, 83401 (United States)

Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam{sup R}, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (10{sup 13} neutrons/cm{sup 2}/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 10{sup 14} /cm{sup 2}/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. Thermal treatment also was performed with the addition of 3 and 5 volume % oxygen at temperatures 700 deg. C and 1400 deg. C. Thermal treatment experiments were evaluated for the effective selective removal of C-14. Lower temperatures and oxygen levels correlated to more efficient C-14 removal. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22224831
Report Number(s):
INIS-US-13-WM-13023; TRN: US14V0264045786
Resource Relation:
Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France; 15 refs.
Country of Publication:
United States
Language:
English