skip to main content

SciTech ConnectSciTech Connect

Title: Spatially resolved assessment of hepatic function using 99mTc-IDA SPECT

Purpose: 99mTc-iminodiacetic acid (IDA) hepatobiliary imaging is usually quantified for hepatic function on the entire liver or regions of interest (ROIs) in the liver. The authors presented a method to estimate the hepatic extraction fraction (HEF) voxel-by-voxel from single-photon emission computed tomography (SPECT)/CT with a 99mTc-labeled IDA agent of mebrofenin and evaluated the spatially resolved HEF measurements with an independent physiological measurement.Methods: Fourteen patients with intrahepatic cancers were treated with radiation therapy (RT) and imaged by 99mTc-mebrofenin SPECT before and 1 month after RT. The dynamic SPECT volumes were with a resolution of 3.9 × 3.9 × 2.5 mm{sup 3}. Throughout the whole liver with approximate 50 000 voxels, voxelwise HEF quantifications were estimated and compared between using arterial input function (AIF) from the heart and using vascular input function (VIF) from the spleen. The correlation between mean of the HEFs over the nontumor liver tissue and the overall liver function measured by Indocyanine green clearance half-time (T1/2) was assessed. Variation of the voxelwise estimation was evaluated in ROIs drawn in relatively homogeneous regions of the livers. The authors also examined effects of the time range parameter on the voxelwise HEF quantification.Results: Mean of the HEFs over the liver estimatedmore » using AIF significantly correlated with the physiological measurement T1/2 (r= 0.52, p= 0.0004), and the correlation was greatly improved by using VIF (r= 0.79, p < 0.0001). The parameter of time range for the retention phase did not lead to a significant difference in the means of the HEFs in the ROIs. Using VIF and a retention phase time range of 7–30 min, the relative variation of the voxelwise HEF in the ROIs was 10%± 6% of respective mean HEF.Conclusions: The voxelwise HEF derived from 99mTc-IDA SPECT by the deconvolution analysis is feasible to assess the spatial distribution of hepatic function in the liver.« less
Authors:
 [1] ;  [2]
  1. Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States)
  2. Department of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States)
Publication Date:
OSTI Identifier:
22220455
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 40; Journal Issue: 9; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ANIMAL TISSUES; BLOOD VESSELS; HEART; IMAGES; INDOCYANINE GREEN; LIVER; NEOPLASMS; PATIENTS; RADIOTHERAPY; SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY; SPATIAL DISTRIBUTION; SPLEEN; TECHNETIUM 99