skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4821980· OSTI ID:22220395
; ;  [1]
  1. Michigan Technological University, Houghton, Michigan 49931 (United States)

Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

OSTI ID:
22220395
Journal Information:
Review of Scientific Instruments, Vol. 84, Issue 10; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English